

bok-choy

UI-level acceptance test framework.

	Introduction
	Installation

	Tutorial
	Folder structure

	Round 1 - The framework of a test

	Round 2 - Interacting with a page

	Round 3 - Search and verify results

	Take it from here!

	Test-Design Guidelines
	Put browser interactions in the page object, not the test

	Put assertions in the test, not the page object

	Never use time.sleep()

	Always make pages wait for actions to complete

	Wait for JavaScript to load

	Performing Accessibility Audits
	Define the Accessibility Rules to Check for a Page

	(Optional) Define the Scope of Accessibility Auditing for a Page

	Trigger an Audit Actively and Assert on the Results Returned

	Leverage Your Existing Tests and Fail on Accessibility Errors

	Visual Diff Testing
	Write Your Page Object and Test Case Code to Navigate the System Under Test

	Add the Call to assertScreenshot

	Create the Initial Baseline Screenshot

	Execute Your Test Cases After Changes to the System Under Test

	Advanced Features

	Performing XSS Vulnerability Audits
	Trigger XSS Vulnerability Audits in Existing Tests

	Browser Customization
	Firefox Profile Preferences

	Firefox Profile Directory

	Testing Environment Configuration
	Testing via TravisCI

	Testing via tox

	API Reference
	browser

	javascript

	page_object

	accessibility

	promise

	query

	web_app_test

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Bok Choy [https://github.com/edx/bok-choy] is a UI-level acceptance test framework for writing robust
Selenium [http://docs.seleniumhq.org/] tests in Python [https://www.python.org/].

Installation

As Bok Choy is a Python framework, you first need to install Python.
If you’re running Linux or Mac OS X, you probably already have it installed.
We recommend that you use pip [http://www.pip-installer.org/] to install your Python
packages:

pip install bok_choy

Tutorial

For this tutorial, we will visit GitHub, execute a search for EdX’s version of
its open source MOOC platform, and verify the results returned.

Folder structure

Your test will be a Python module, so let’s get started by defining it as such. Make a folder for
your project, and inside that create an empty file named __init__.py.

/home/user/bok-choy-tutorial
 - __init__.py

mkdir ~/bok-choy-tutorial
cd ~/bok-choy-tutorial
touch __init__.py

Round 1 - The framework of a test

Let’s set up and execute a simple test to make sure that all the pieces are installed
and working properly.

Define the page

The first step is to define the page object for the page of the web application that you will
be interacting with. This includes the name of the page and a method to check whether the browser
is on the page. If it is possible to navigate directly to the page, we want to tell the page object
how to do that too.

Create a file named pages.py in your project folder and define the GitHubSearchPage page object
as follows:

/home/user/bok-choy-tutorial
 - __init__.py
 - pages.py

-*- coding: utf-8 -*-
from bok_choy.page_object import PageObject

class GitHubSearchPage(PageObject):
 """
 GitHub's search page
 """

 url = 'http://www.github.com/search'

 def is_browser_on_page(self):
 return 'code search' in self.browser.title.lower()

Write a test for the page

Write the first test, which will open up a browser, navigate to the page we just defined,
and verify that we got there.

Create a file named test_search.py in your project folder and use it to visit the page as follows:

/home/user/bok-choy-tutorial
 - __init__.py
 - pages.py
 - test_search.py

import unittest
from bok_choy.web_app_test import WebAppTest
from pages import GitHubSearchPage

class TestGitHub(WebAppTest):
 """
 Tests for the GitHub site.
 """

 def test_page_existence(self):
 """
 Make sure that the page is accessible.
 """
 GitHubSearchPage(self.browser).visit()

if __name__ == '__main__':
 unittest.main()

Execute the test

Execute the test from the command line with the following.

python test_search.py

.
--
Ran 1 test in 3.417s

OK

What just happened?

You should have seen your default browser launch and navigate to the GitHub search
page. It knew how to get there because of the page object’s ‘url’ property.

Once the browser navigated to the page, it knew it was on the right page because the page’s
‘is_browser_on_page’ method returned True.

Round 2 - Interacting with a page

Let’s circle back around to improve the definition of the page and have the test do
something more interesting, like searching for something.

Improve the page definition

Tip

A Best Practice for Bok Choy tests is to use css locators to identify objects.

Hint

Get to know how to use the developer tools for your favorite browser.
Here are links to articles to get you started with Chrome [https://developers.google.com/chrome-developer-tools/docs/dom-and-styles] and Firefox [https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector].

Edit your pages.py file to add in the input field where you type in text and the search button.
Using the Developer Tools for my browser, I see that the input field can be identified by combining form tags
id (#search_form) and input tags type (text), so its css locator would be ‘#search_form > input[type=”text”]’.

<form accept-charset="UTF-8" action="/search" class="search_repos" id="search_form" method="get">
 <input type="text" data-hotkey="s" name="q" placeholder="Search GitHub" tabindex="1" autocapitalize="off" autofocus="" autocomplete="off" spellcheck="false">

Add a method for filling in the search term to the page object definition like this:

 def enter_search_terms(self, text):
 """
 Fill the text into the input field
 """
 self.q(css='#search_form input[type="text"]').fill(text)

What’s next? I see that type (button) and class (button) are good way to identify the search button.
Its css locator would be “button.button”.

<button class="button" type="submit" tabindex="3">Search</button>

We will need to define how to press the button. But we also want to define how we know that
pressing the button really worked. Try it yourself in a browser. While I’m writing this tutorial,
the way the GitHub search currently works is to bring you to a search results page (as long as you
entered text into the input field).

So before we add the method for clicking the Search button, we should add the definition for the
search results page to pages.py. If we want to use the page title again, we can see that when you
search for “foo bar” it will be:

<title>Search · foo bar</title>

Add another page’s definition

So we add the search results page definition to pages.py:

-*- coding: utf-8 -*-
import re
from bok_choy.page_object import PageObject

class GitHubSearchResultsPage(PageObject):
 """
 GitHub's search results page
 """

 # You do not navigate to this page directly
 url = None

 def is_browser_on_page(self):
 # This should be something like: u'Search · foo bar · GitHub'
 title = self.browser.title
 matches = re.match(u'^Search .+ GitHub$', title)
 return matches is not None

Define the search method

Back to defining a method for pressing the button and knowing that you have arrived at the
results page: We want to press the button, then wait and make sure that you have arrived at
the results page before continuing on. Page objects in Bok Choy have a wait_for_page method
that does just that.

Let’s see how the method definition for pressing the search button would look.

class GitHubSearchPage(PageObject):
 """
 GitHub's search page
 """

 url = 'http://www.github.com/search'

 def is_browser_on_page(self):
 return 'code search' in self.browser.title.lower()

 def enter_search_terms(self, text):
 """
 Fill the text into the input field
 """
 self.q(css='#search_form input[type="text"]').fill(text)

 def search(self):
 """
 Click on the Search button and wait for the
 results page to be displayed
 """
 self.q(css='button.btn').click()
 GitHubSearchResultsPage(self.browser).wait_for_page()

 def search_for_terms(self, text):
 """
 Fill in the search terms and click the
 Search button
 """
 self.enter_search_terms(text)
 self.search()

Add the new test

Now let’s add the new test to test_search.py:

import unittest
from bok_choy.web_app_test import WebAppTest
from pages import GitHubSearchPage, GitHubSearchResultsPage

class TestGitHub(WebAppTest):
 """
 Tests for the GitHub site.
 """

 def setUp(self):
 """
 Instantiate the page object.
 """
 super(TestGitHub, self).setUp()
 self.github_search_page = GitHubSearchPage(self.browser)

 def test_page_existence(self):
 """
 Make sure that the page is accessible.
 """
 self.github_search_page.visit()

 def test_search(self):
 """
 Make sure that you can search for something.
 """
 self.github_search_page.visit().search_for_terms('user:edx repo:edx-platform')

if __name__ == '__main__':
 unittest.main()

Run it!

python test_search.py

..
--
Ran 2 tests in 8.478s

OK

What just happened?

The first test ran, just as before. Now the second test ran too: it entered the search term,
hit the search button, and verified that it got to the results page.

Round 3 - Search and verify results

In the test version that we just completed we entered some search terms and
then verified that we got to the right page, but not that the correct results
were returned. Let’s improve our test to verify the search results.

Improve the page definitions

Since we want to verify the results of the search, we need to add a property for the
results returned to the page object for the search results page.

-*- coding: utf-8 -*-
import re
from bok_choy.page_object import PageObject

class GitHubSearchResultsPage(PageObject):
 """
 GitHub's search results page
 """

 url = None

 def is_browser_on_page(self):
 # This should be something like: u'Search · foo bar · GitHub'
 title = self.browser.title
 matches = re.match(u'^Search .+ GitHub$', title)
 return matches is not None

 @property
 def search_results(self):
 """
 Return a list of results returned from a search
 """
 return self.q(css='ul.repo-list > li > div > h3 > a').text

Also maybe we want a better way to determine that we are on the search page than
just the words “code search” the title. Let’s use a query to make sure that the
search button exists.

class GitHubSearchPage(PageObject):
 """
 GitHub's search page
 """

 url = 'http://www.github.com/search'

 def is_browser_on_page(self):
 return self.q(css='button.btn').is_present()

Improve the search test

Now we want to verify that edx-platform repo for the EdX account was returned in the
search results. And not only that, but also that it was the first result.
Modify the test_search.py file to do these assertions:

import unittest
from bok_choy.web_app_test import WebAppTest
from pages import GitHubSearchPage, GitHubSearchResultsPage

class TestGitHub(WebAppTest):
 """
 Tests for the GitHub site.
 """

 def setUp(self):
 """
 Instantiate the page object.
 """
 super(TestGitHub, self).setUp()
 self.github_search_page = GitHubSearchPage(self.browser)
 self.github_results_page = GitHubSearchResultsPage(self.browser)

 def test_page_existence(self):
 """
 Make sure that the page is accessible.
 """
 self.github_search_page.visit()

 def test_search(self):
 """
 Make sure that you can search for something.
 """
 self.github_search_page.visit().search_for_terms('user:edx repo:edx-platform')
 search_results = self.github_results_page.search_results
 assert 'edx/edx-platform' in search_results
 assert search_results[0] == 'edx/edx-platform'

if __name__ == '__main__':
 unittest.main()

Run it!

python test_search.py

..
--
Ran 2 tests in 7.692s

OK

What just happened?

Both tests ran. We verified that we could get to the GitHub search page, then
we searched for the EdX user’s edx-platform repo and verified that it was the
first result returned.

Take it from here!

This tutorial should have gotten you going with defining page objects for a web application
and how to start to write tests against the app. Now it’s up to you to take it from here and
start testing your own web application. Have fun!

Test-Design Guidelines

To ensure that your tests are robust and maintainable, you should follow these guidelines:

	Put browser interactions in the page object, not the test.

	Put assertions in the test, not the page object.

	Never use time.sleep()

	Always make pages wait for actions to complete.

	Wait for JavaScript to load.

Put browser interactions in the page object, not the test

When writing tests, it is sometimes tempting to query the browser directly. For example, you might write a test like this:

class BarTest(WebAppTest):
 def test_bar(self):
 bar_text = self.browser.find_elements_by_css_selector('div.bar').text
 self.assertEqual(bar_text, "Bar")

Don’t do this! There are a number of problems with this approach:

	If the CSS selector on the page changes, you will need to change every test that uses the CSS selector.

	Selenium calls are notoriously unreliable. They provide no retry logic to protect you from timing issues, which can cause intermittent test failures. In contrast, bok-choy’s higher-level interface for browser interactions include robust error-checking and retry logic.

Instead, encapsulate the browser interaction within a page object:

class BarPage(PageObject):
 def is_browser_on_page(self):
 return self.q(css='section#bar').is_present()

 @property
 def text(self):
 return self.q(css='div.bar').text
 if len(text_items) > 0:
 return text_items[0]
 else:
 return ""

Then use the page object in a test:

class BarTest(WebAppTest):
 def test_bar(self):
 bar_page = BarPage(self.browser)
 self.assertEqual(bar_page.text, "Bar")

The page object will first check that the browser is on the correct page before trying to use the page. It will also retry if, for example, JavaScript modifies the <div> in between the time we retrieve it and when we get the element’s text (this would result in a run-time exception otherwise). Finally, if the CSS selector on the page changes, we can modify the page object, thus updating every test that interacts with the page.

Put assertions in the test, not the page object

Page objects allow tests to interact with the pages on a site. But page objects should not make assertions about the page; that’s the responsibility of the test.

For example, don’t do this:

class BarPage(PageObject):
 def check_section_title(self):
 assert self.q(css='div.bar').text == ['Test Section']

Because the page object contains the assertion, the page object is less re-usable. If another test expects the page title to be something other than “Test Section”, it cannot re-use check_section_title().

Instead, do this:

class BarPage(PageObject):
 def section_title(self):
 text_items = self.q(css='div.bar').text
 if len(text_items) > 0:
 return text_items[0]
 else:
 return ""

Each test can then access the section title and assert that it matches what the test expects.

Never use time.sleep()

Sometimes, tests fail because when they check the page too soon. Often, tests must wait for JavaScript on the page to finish manipulating the DOM, such as when adding elements or even attaching event listeners. In these cases, it is tempting to insert an explicit wait using time.sleep(). For example:

class FooPage(PageObject):
 def do_foo(self):
 time.sleep(10)
 self.q(css='button.foo').click()

There are two problems with this approach:

	Tests run more slowly, because they will always wait, even if the page is ready.

	No matter how long the test waits, at some point it will not wait long enough. This leads to intermittent test failures.

bok-choy provides two mechanisms for dealing with timing issues. First, each page object checks that the browser is on the correct page before you can interact with the page:

class FooPage(PageObject):
 def is_browser_on_page(self):
 return self.q(css='section.bar').is_present()

 def do_foo(self):
 self.q(css='button.foo').click()

When you call do_foo(), the page will wait for section.bar to be present in the DOM.

Second, the page object can use a Promise to wait for the DOM to be in a certain state. For example, suppose that the page is ready when a “loading” message is no longer visible. You could check this condition using a Promise:

class FooPage(PageObject):
 def is_browser_on_page(self):
 return self.q(css='button.foo').is_present()

 def do_foo(self):
 ready_promise = EmptyPromise(
 lambda: 'Loading...' not in self.q(css='div.msg').text,
 "Page finished loading"
).fulfill()

 self.q(css='button.foo').click()

Always make pages wait for actions to complete

Page objects generally provide two ways of interacting with a page:
1. Querying the page for information.
2. Performing an action on the page.

In the second case, page objects should wait for the action to complete before returning. For example, suppose a page object has a method save_document() that clicks a Save button. The page then redirects to a different page. In this case, the page object should wait for the next page to load before returning control to the caller.

class FooPage(PageObject):
 def save_document():
 self.q(css='button.save').click()
 return BarPage(self.browser).wait_for_page()

Tests can then use this page without worrying about whether the next page has loaded:

def test_save(self):
 bar = FooPage(self.browser).save_document()
 self.assertEqual(bar.text, "Bar")

Wait for JavaScript to load

Sometimes, a page is not ready until JavaScript on the page has finished loading. This is especially problematic for pages that load JavaScript asynchronously (for example, when using RequireJS [http://requirejs.org/]).

bok-choy provides a simple mechanism for waiting for RequireJS modules to load:

@requirejs('foo')
class FooPage(PageObject):

 @wait_for_js
 def text(self):
 return self.q(css='div.foo').text

This will ensure that the RequireJS module foo has loaded before executing text().

More generally, you can wait for JavaScript variables to be defined:

@js_defined('window.Foo')
class FooPage(PageObject):

 @wait_for_js
 def text(self):
 return self.q(css='div.foo').text

Performing Accessibility Audits

The bok-choy framework includes the ability to perform accessibility audits on
web pages using either Google Accessibility Developer Tools [https://github.com/GoogleChrome/accessibility-developer-tools] or Dequelabs Axe Core Accessibility Engine [https://github.com/dequelabs/axe-core].

In each page object’s definition you can define the audit rules to use for
checking that page and optionally, the scope of the audit within the webpage
itself.

The general methodology for enabling accessibility auditing consists of the
following steps.

	Define the Accessibility Rules to Check for a Page

	(Optional) Define the Scope of Accessibility Auditing for a Page

	Perform the audits either actively or passively.

	Actively: Trigger an Audit Actively and Assert on the Results Returned

	Passively: Leverage Your Existing Tests and Fail on Accessibility Errors

Define the Accessibility Rules to Check for a Page

A page object’s list of audit rules to use in the accessibility audit for a
page are defined in the rules attribute of an A11yAuditConfig object.
This can be updated after instantiating the page object to be tested via the
set_rules method.

The default is to check all the rules. To set this explicitly, pass an empty
dictionary to set_rules.

page.a11y_audit.config.set_rules({})

To skip automatic accessibility checking for a particular page, update the
page object’s page.verify_accessibility attribute to return False.

To check only a specific set of rules on a particular page, pass the list of
the names of the rules to that page’s A11yAudit object’s set_rules
method as the apply key.

page.a11y_audit.config.set_rules({
 "apply": ['badAriaAttributeValue', 'imagesWithoutAltText'],
})

To skip checking a specific set of rules on a particular page, pass the list
of the names of the rules as the first argument to that page’s A11yAudit object’s set_rules method as the ignore key.

page.a11y_audit.config.set_rules({
 "ignore": ['badAriaAttributeValue', 'imagesWithoutAltText'],
})

(Optional) Define the Scope of Accessibility Auditing for a Page

You can limit the scope of an accessibility audit to only a portion of a page.
The default scope is the entire document.

To limit the scope, configure the page object’s A11yAuditConfig object via
the set_scope method.

For instance, to start the accessibility audit in the div with id foo,
you can follow this example.

page.a11y_audit.config.set_scope(["div#foo"])

Please see the rulset specific documentation for the set_scope method for
more details.

Trigger an Audit Actively and Assert on the Results Returned

To trigger an accessibility audit actively, call the page object class’s
a11y_audit.do_audit method and then assert on the results returned.

Here is an example of how you might write a test case that actively performs
an accessibility audit.

from bok_choy.page_object import PageObject

class MyPage(PageObject):
 def __init__(self, *args, **kwargs):
 super(MyPage, self).__init__(*args, **kwargs)

 self.a11y_audit.config.set_rules({
 "apply": ['badAriaAttributeValue', 'imagesWithoutAltText'],
 })

 def url(self):
 return 'https://www.mysite.com/page'

class AccessibilityTest(WebAppTest):

 def test_accessibility_on_page(self):
 page = MyPage(self.browser)
 page.visit()
 report = page.a11y_audit.do_audit()

 # There was one page in this session
 self.assertEqual(1, len(report))
 result = report[0]

 # I have already corrected any accessibility errors on my page
 # for the rules I defined in the page object, so I will assert
 # that none exist.
 self.assertEqual(0, len(result.errors))
 self.assertEqual(0, len(result.warnings))

Leverage Your Existing Tests and Fail on Accessibility Errors

To trigger accessibility audits passively, set the VERIFY_ACCESSIBILITY
environment variable to True. Doing so triggers an accessibility audit
whenever a page object’s wait_for_page method is called. If errors are
found on the page, an AccessibilityError is raised.

Note

An AccessibilityError is raised only on errors, not on warnings.

You might already have some bok-choy tests written for your web application.
Here is an example of a bok-choy test that will implicity check for two
specific accessibility rules.

from bok_choy.page_object import PageObject

class MyPage(PageObject):
 def __init__(self, *args, **kwargs):
 super(MyPage, self).__init__(*args, **kwargs)

 self.a11y_audit.config.set_rules({
 "apply": ['badAriaAttributeValue', 'imagesWithoutAltText']
 })

 def url(self):
 return 'https://www.mysite.com/page'

 def click_button(self):
 """
 Click on the button element (id="button").
 On my example page this will trigger an ajax call
 that updates the #output div with the text "yes!"
 """
 self.q(css='div#fixture button').first.click()
 self.wait_for_ajax()

 @property
 def output(self):
 """
 Return the contents of the "#output" div on the page.
 """
 text_list = self.q(css='#output').text

 if len(text_list) < 1:
 return None
 else:
 return text_list[0]

class MyPageTest(WebAppTest):

 def test_button_click_output(self):
 page = MyPage(self.browser)
 page.visit()
 page.click_button()

 self.assertEqual(page.output, 'yes!')

You can reuse your existing bok-choy tests in order to navigate through
the application while at the same time verifying that it is accessibile.

Before running your bok-choy tests, set the environment variable
VERIFY_ACCESSIBILITY to True.

export VERIFY_ACCESSIBILITY=True

This will trigger an audit, using the rules (and optionally the scope) set in
the page object definition, whenever a call to wait_for_page() is made.

In the case of the test_button_click_output test case in the example above,
an audit will be done at the end of the visit() and click_button() method calls,
as each of those will call out to wait_for_page().

If any assessibility errors are found, then the testcase will fail with an
AccessibilityError.

Note

An AccessibilityError is raised only on errors, not on warnings.

Visual Diff Testing

The bok-choy framework uses Needle [https://github.com/bfirsh/needle] to provide the ability to capture
portions of a rendered page in the browser and assert that the image captured
matches that of a baseline. Needle is an optional dependency of bok-choy,
which you can install via either of the following commands:

pip install bok-choy[visual_diff]
pip install needle

The general methodology for creating a test with a screenshot assertion
consists of the following steps.

	Write Your Page Object and Test Case Code to Navigate the System Under Test

	Add The Call to assertScreenshot

	Create the Initial Baseline Screenshot

	Execute Your Test Cases After Changes to the System Under Test

	Advanced Features

Write Your Page Object and Test Case Code to Navigate the System Under Test

If you are not familiar with how to write a bok-choy page object and test case,
first check out the Tutorial.

Here is an example of a test that navigates to the edx.org home page.

page.py, which contains the page object.

from bok_choy.page_object import PageObject

class EdxHomePage(PageObject):
 url = 'http://www.edx.org'

 def is_browser_on_page(self):
 return 'edx' in self.browser.title.lower()

my_test.py, which contains the test code.

from bok_choy.web_app_test import WebAppTest
from page import EdxHomePage

class TestEdxHomePage(WebAppTest):

 def test_page_existence(self):
 EdxHomePage(self.browser).visit()

Add the Call to assertScreenshot

assertScreenshot() takes two arguments: a CSS selector for the element to
capture, and a filename for the image.

The following example uses the same my_test.py test case shown in the
previous section, with an assertion added to check that the site logo for the
edx.org home page has not changed.

	The first argument, img.site-logo is the css locator for the element
that we want to capture and compare.

	The second argument, edx_logo_header is the filename that will be used
for both the baseline and the actual results. The .png extension is appended
automatically.

Note

For test reliability and synchronization purposes, a bok-choy best
practice is to employ Promises to ensure that the page has been fully
rendered before you take the screenshot. At the very least, you should
first assert that the element you want to capture is present and visible on
the screen.

my_test.py, with the screenshot assertion.

from bok_choy.web_app_test import WebAppTest
from page import EdxHomePage

class TestEdxHomePage(WebAppTest):

 def test_page_existence(self):
 homepage = EdxHomePage(self.browser).visit()
 css_locator = 'img.site-logo'
 self.assertTrue(homepage.q(css=css_locator).first.visible)
 self.assertScreenshot(css_locator, 'edx_logo_header')

Create the Initial Baseline Screenshot

To create an initial screenshot of the logo, run the test case in “baseline
saving” mode by specifying the nose parameter --with-save-baseline.

$ nosetests my_test.py --with-save-baseline

If using pytest, you can instead set the environment variable
NEEDLE_SAVE_BASELINE.

$ NEEDLE_SAVE_BASELINE=true py.test my_test.py

The folder in which the baseline and actual (output) screenshots are saved is
determined using the following environment variables.

	NEEDLE_OUTPUT_DIR - defaults to “screenshots”

	NEEDLE_BASELINE_DIR - defaults to “screenshots/baseline”

In our example, we would execute the test once with the save baseline
parameter to create screenshots/baseline/edx_logo_header.png. We would then
open it up and check that it looks okay.

Execute Your Test Cases After Changes to the System Under Test

Now if we run our tests, it will take the same screenshot and check it against
the saved baseline screenshot on disk.

$ nosetests my_test.py

If a regression causes them to become significantly different, then the test
will fail.

Advanced Features

See the Needle documentation [http://needle.readthedocs.org/] for more information on the following advanced
features.

	Setting the viewport’s size - This feature is particularly useful for
predicting the size of the resulting screenshots when taking full screen
captures, and for testing responsive sites.

	Difference engine - Instead of PIL (the default), you might want to use
PerceptualDiff. In addition to being much faster than PIL, PerceptualDiff
generates a diff PNG file when a test fails, highlighting the differences
between the baseline image and the new screenshot.

	File cleanup - Each time you run tests, new screenshot images are saved to
disk, for comparison with the baseline screenshots. You might want to set
your configuration to delete these files for all successful tests.

Performing XSS Vulnerability Audits

The bok-choy framework includes the ability to perform XSS (cross-site scripting) audits on
web pages using a short XSS locator defined in
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet#XSS_Locator.

Trigger XSS Vulnerability Audits in Existing Tests

You might already have some bok-choy tests written for your web application. To
leverage existing bok-choy tests and have them fail on finding XSS vulnerabilities,
follow these steps.

	Insert the XSS_INJECTION string defined in bok_choy.page_object into your page content.

	Set the VERIFY_XSS environment variable to True.

export VERIFY_XSS=True

With this environment variable set, an XSS audit is triggered whenever a page object’s q
method is called. The audit will detect improper escaping both in HTML and in Javascript
that is embedded within HTML.

If errors are found on the page, an XSSExposureError is raised.

Here is an example of a bok-choy test that will check for XSS vulnerabilities.
It clicks a button on the page, and the user’s name is inserted into the page.
If the user name is not properly escaped, the display
of the name (which is data provided by the user and thus potentially malicious) can cause
XSS issues.

In the case of the test_button_click_output test case in the example below,
an audit will be done in the click_button(), output(), and visit() method calls,
as each of those will call out to q.

If any XSS errors are found, then the test case will fail with an
XSSExposureError.

from bok_choy.page_object import PageObject, XSS_INJECTION

class MyPage(PageObject):
 def url(self):
 return 'https://www.mysite.com/page'

 def is_browser_on_page(self):
 return self.q(css='div#fixture button').present

 def click_button(self):
 """
 Click on the button element (id="button").
 On my example page this will trigger an ajax call
 that updates the #output div with the user's name.
 """
 self.q(css='div#fixture button').first.click()
 self.wait_for_ajax()

 @property
 def output(self):
 """
 Return the contents of the "#output" div on the page.

 In the example page, it will contain the user's name after being
 updated by the ajax call that is triggered by clicking the button.
 """
 text_list = self.q(css='#output').text

 if len(text_list) < 1:
 return None
 else:
 return text_list[0]

class MyPageTest(WebAppTest):
 def setUp(self):
 """
 Log in as a particular user.
 """
 super(MyPageTest, self).setUp()
 self.user_name = XSS_INJECTION
 self.log_in_as_user(self.user_name)

 def test_button_click_output(self):
 page = MyPage(self.browser)
 page.visit()
 page.click_button()

 self.assertEqual(page.output, self.user_name)

 def log_in_as_user(self, user_name):
 """
 Would be implemented to log in as a particular user
 with a potentially malicious, user-provided name.
 """
 pass

Browser Customization

Although the default browser configurations provided by bok-choy should be
sufficient for most needs, sometimes you’ll need to customize it a little
for particular tests or even an entire test suite. Here are some of the
options bok-choy provides for doing that.

Firefox Profile Preferences

Whether you use a custom profile or not, you can customize the profile’s
preferences before the browser is launched. To do this, create a function
which takes a
FirefoxProfile [https://seleniumhq.github.io/selenium/docs/api/py/webdriver_firefox/selenium.webdriver.firefox.firefox_profile.html#selenium.webdriver.firefox.firefox_profile.FirefoxProfile]
as a parameter and add it via the
bok_choy.browser.add_profile_customizer() function. For example,
to suppress the “unresponsive script” warning dialog that normally interrupts
a test case in Firefox when running accessibility tests on a particularly long
page:

def customize_preferences(profile):
 profile.set_preference('dom.max_chrome_script_run_time', 0)
 profile.set_preference('dom.max_script_run_time', 0)
bok_choy.browser.add_profile_customizer(customize_preferences)

This customization can be done in any of the normal places that test setup
occurs: setUpClass(), a pytest fixture, the test case itself, etc. You
can clear any previously-added profile customizers via the
bok_choy.browser.clear_profile_customizers() function.

Firefox Profile Directory

Normally, selenium launches Firefox using a new, anonymous user profile. If
you have a specific Firefox profile that you’d like to use instead, you can
specify the path to its directory in the FIREFOX_PROFILE_PATH environment
variable anytime before the call to bok_choy.browser.browser(). This
passes the path to the
FirefoxProfile constructor [https://seleniumhq.github.io/selenium/docs/api/py/webdriver_firefox/selenium.webdriver.firefox.firefox_profile.html#selenium.webdriver.firefox.firefox_profile.FirefoxProfile]
so the browser can be launched with any customizations that have been made to
that profile.

Testing Environment Configuration

Testing via TravisCI

bok-choy can be used along with Travis CI to test changes remotely.
One way to accomplish this testing is to use the headless version of Chrome or Firefox.
bok-choy does this when the BOKCHOY_HEADLESS environment is set to “true”.

before_script:
 - export BOKCHOY_HEADLESS=true

Another option is to use the X Virtual Framebuffer (xvfb) to imitate a display.
Headless versions of Chrome and Firefox are relatively new developments,
so you may want to use xvfb if you encounter a bug with headless browser usage.
To use xvfb, you’ll start it up via a before_script section in your .travis.yml file, like this:

before_script:
 - "export DISPLAY=:99.0"
 - "sh -e /etc/init.d/xvfb start"
 - sleep 3 # give xvfb some time to start

For more details, see this code example [https://github.com/edx/xblock-sdk/blob/c7ec2327c0847dc35f57686945490e97e5cd66a5/.travis.yml#L28-L31] and the Travis [https://docs.travis-ci.com/user/gui-and-headless-browsers/] docs.

Testing via tox

bok-choy can be used along with tox to test against multiple Python virtual environments containing different versions of requirements.

An important detail when using tox in a Travis CI environment: tox passes along only a fixed list of environment variables to each tox-created virtual environment.
When using bok-choy via xvfb in tox, the DISPLAY environment variable is needed but is not automatically passed-in.
The tox.ini file needs to specify the DISPLAY variable like this:

[testenv]
passenv =
 DISPLAY

For more details, see the tox [https://tox.readthedocs.io/en/latest/config.html#confval-passenv=SPACE-SEPARATED-GLOBNAMES] docs.

API Reference

browser

Use environment variables to configure Selenium remote WebDriver.
For use with SauceLabs (via SauceConnect) or local browsers.

	
exception bok_choy.browser.BrowserConfigError

	Misconfiguration error in the environment variables.

	
bok_choy.browser.add_profile_customizer(func)

	Add a new function that modifies the preferences of the firefox profile object it receives as an argument

	
bok_choy.browser.browser(tags=None, proxy=None, other_caps=None)

	Interpret environment variables to configure Selenium.
Performs validation, logging, and sensible defaults.

There are three cases:

	
	Local browsers: If the proper environment variables are not all set for the second case,

	then we use a local browser.

	The environment variable SELENIUM_BROWSER can be set to specify which local browser to use. The default is Firefox.

	Additionally, if a proxy instance is passed and the browser choice is either Chrome or Firefox, then the browser will be initialized with the proxy server set.

	The environment variable SELENIUM_FIREFOX_PATH can be used for specifying a path to the Firefox binary. Default behavior is to use the system location.

	The environment variable FIREFOX_PROFILE_PATH can be used for specifying a path to the Firefox profile. Default behavior is to use a barebones default profile with a few useful preferences set.

	
	Remote browser (not SauceLabs): Set all of the following environment variables, but not all of

	the ones needed for SauceLabs:

	SELENIUM_BROWSER

	SELENIUM_HOST

	SELENIUM_PORT

	SauceLabs: Set all of the following environment variables:

	SELENIUM_BROWSER

	SELENIUM_VERSION

	SELENIUM_PLATFORM

	SELENIUM_HOST

	SELENIUM_PORT

	SAUCE_USER_NAME

	SAUCE_API_KEY

NOTE: these are the environment variables set by the SauceLabs
Jenkins plugin.

Optionally provide Jenkins info, used to identify jobs to Sauce:

	JOB_NAME

	BUILD_NUMBER

tags is a list of string tags to apply to the SauceLabs
job. If not using SauceLabs, these will be ignored.

	Keyword Arguments

	
	tags (list of str) – Tags to apply to the SauceLabs job. If not using SauceLabs, these will be ignored.

	proxy – A proxy instance.

	other_caps (dict of str) – Additional desired capabilities to provide to remote WebDriver instances. Note

	these values will be overwritten by environment variables described above. This is only used for (that) –

	driver instances, where such info is usually used by services for additional configuration and (remote) –

	metadata. –

	Returns

	The configured browser object used to drive tests

	Return type

	selenium.webdriver

	Raises

	BrowserConfigError – The environment variables are not correctly specified.

	
bok_choy.browser.clear_profile_customizers()

	Remove any previously-configured functions for customizing the firefox profile

	
bok_choy.browser.save_driver_logs(driver, prefix)

	Save the selenium driver logs.

The location of the driver log files can be configured
by the environment variable SELENIUM_DRIVER_LOG_DIR. If not set,
this defaults to the current working directory.

	Parameters

	
	driver (selenium.webdriver) – The Selenium-controlled browser.

	prefix (str) – A prefix which will be used in the output file names for the logs.

	Returns

	None

	
bok_choy.browser.save_screenshot(driver, name)

	Save a screenshot of the browser.

The location of the screenshot can be configured
by the environment variable SCREENSHOT_DIR. If not set,
this defaults to the current working directory.

	Parameters

	
	driver (selenium.webdriver) – The Selenium-controlled browser.

	name (str) – A name for the screenshot, which will be used in the output file name.

	Returns

	None

	
bok_choy.browser.save_source(driver, name)

	Save the rendered HTML of the browser.

The location of the source can be configured
by the environment variable SAVED_SOURCE_DIR. If not set,
this defaults to the current working directory.

	Parameters

	
	driver (selenium.webdriver) – The Selenium-controlled browser.

	name (str) – A name to use in the output file name.
Note that “.html” is appended automatically

	Returns

	None

javascript

Helpers for dealing with JavaScript synchronization issues.

	
bok_choy.javascript.js_defined(*js_vars)

	Class decorator that ensures JavaScript variables are defined in the browser.

This adds a wait_for_js method to the class, which will
block until all the expected JavaScript variables are defined.

	Parameters

	js_vars (list of str) – List of JavaScript variable names to wait for.

	Returns

	Decorated class

	
bok_choy.javascript.requirejs(*modules)

	Class decorator that ensures RequireJS modules are loaded in the browser.

This adds a wait_for_js method to the class, which will
block until all the expected RequireJS modules are loaded.

	Parameters

	modules (list of str) –

	Returns

	Decorated class

	
bok_choy.javascript.wait_for_js(function)

	Method decorator that waits for JavaScript dependencies before executing function.
If the function is not a method, the decorator has no effect.

	Parameters

	function (callable) – Method to decorate.

	Returns

	Decorated method

page_object

Base implementation of the Page Object pattern.
See https://github.com/SeleniumHQ/selenium/wiki/PageObjects
and http://www.seleniumhq.org/docs/06_test_design_considerations.jsp#page-object-design-pattern

	
exception bok_choy.page_object.PageLoadError

	An error occurred while loading the page.

	
class bok_choy.page_object.PageObject(browser, *args, **kwargs)

	Encapsulates user interactions with a specific part
of a web application.

The most important thing is this:
Page objects encapsulate Selenium.

If you find yourself writing CSS selectors in tests,
manipulating forms, or otherwise interacting directly
with the web UI, stop!

Instead, put these in a PageObject subclass :)

PageObjects do their best to verify that they are only
used when the browser is on a page containing the object.
To do this, they will call is_browser_on_page() before executing
any of their methods, and raise a WrongPageError if the
browser isn’t on the correct page.

Generally, this is the right behavior. However, at times it
will be useful to not verify the page before executing a method.
In those cases, the method can be marked with the unguarded()
decorator. Additionally, private methods (those beginning with _)
are always unguarded.

Class or instance properties are never guarded. However, methods
marked with the property() are candidates for being guarded.
To make them unguarded, you must mark the getter, setter, and deleter
as unguarded() separately, and those decorators must be applied before
the property() decorator.

Correct:

@property
@unguarded
def foo(self):
 return self._foo

Incorrect:

@unguarded
@property
def foo(self):
 return self._foo

Initialize the page object to use the specified browser instance.

	Parameters

	browser (selenium.webdriver) – The Selenium-controlled browser.

	Returns

	PageObject

	
a11y_audit

	Initializes the a11y_audit attribute.

	
handle_alert(*args, **kwargs)

	Context manager that ensures alerts are dismissed.

Example usage:

with self.handle_alert():
 self.q(css='input.submit-button').first.click()

	Keyword Arguments

	confirm (bool) – Whether to confirm or cancel the alert.

	Returns

	None

	
is_browser_on_page()

	Check that we are on the right page in the browser.
The specific check will vary from page to page,
but usually this amounts to checking the:

	browser URL

	page title

	page headings

	Returns

	A bool indicating whether the browser is on the correct page.

	
q(**kwargs)

	Construct a query on the browser.

Example usages:

self.q(css="div.foo").first.click()
self.q(xpath="/foo/bar").text

	Keyword Arguments

	
	css – A CSS selector.

	xpath – An XPath selector.

	Returns

	BrowserQuery

	
scroll_to_element(element_selector, timeout=60)

	Scrolls the browser such that the element specified appears at the top. Before scrolling, waits for
the element to be present.

Example usage:

self.scroll_to_element('.far-down', 'Scroll to far-down')

	Parameters

	
	element_selector (str) – css selector of the element.

	timeout (float) – Maximum number of seconds to wait for the element to be present on the
page before timing out.

Raises: BrokenPromise if the element does not exist (and therefore scrolling to it is not possible)

	
url

	Return the URL of the page. This may be dynamic,
determined by configuration options passed to the
page object’s constructor.

Some pages may not be directly accessible:
perhaps the page object represents a “navigation”
component that occurs on multiple pages.
If this is the case, subclasses can return None
to indicate that you can’t directly visit the page object.

	
classmethod validate_url(url)

	Return a boolean indicating whether the URL has a protocol and hostname.
If a port is specified, ensure it is an integer.

	Parameters

	url (str) – The URL to check.

	Returns

	Boolean indicating whether the URL has a protocol and hostname.

	
visit()

	Open the page containing this page object in the browser.

Some page objects may not provide a URL, in which case
a NotImplementedError will be raised.

	Raises

	
	PageLoadError – The page did not load successfully.

	NotImplementedError – The page object does not provide a URL to visit.

	Returns

	PageObject

	
wait_for(promise_check_func, description, result=False, timeout=60)

	Calls the method provided as an argument until the Promise satisfied or BrokenPromise.
Retries if a WebDriverException is encountered (until the timeout is reached).

	Parameters

	
	promise_check_func (callable) –
	
	If result is False Then

	Function that accepts no arguments and returns a boolean indicating whether the promise is fulfilled

	
	If result is True Then

	Function that accepts no arguments and returns a (is_satisfied, result) tuple,
where is_satisfied is a boolean indicating whether the promise was satisfied, and result
is a value to return from the fulfilled Promise

	description (str) – Description of the Promise, used in log messages

	result (bool) – Indicates whether we need result

	timeout (float) – Maximum number of seconds to wait for the Promise to be satisfied before timing out

	Raises

	BrokenPromise – the Promise was not satisfied

	
wait_for_ajax(timeout=30)

	Wait for jQuery to be loaded and for all ajax requests to finish. Note
that we have to wait for jQuery to load first because it is used to
check that ajax requests are complete.

Important: If you have an ajax requests that results in a page reload,
you will need to use wait_for_page or some other method to confirm that
the page has finished reloading after wait_for_ajax has returned.

Example usage:

self.q(css='input#email').fill("foo")
self.wait_for_ajax()

	Keyword Arguments

	
	timeout (int) – The number of seconds to wait before timing out with

	BrokenPromise exception. (a) –

	Returns

	None

	Raises

	
	BrokenPromise – The timeout is exceeded before (1) jQuery is defined

	and (2) all ajax requests are completed.

	
wait_for_element_absence(element_selector, description, timeout=60)

	Waits for element specified by element_selector until it disappears from DOM.

Example usage:

self.wait_for_element_absence('.submit', 'Submit Button is not Present')

	Parameters

	
	element_selector (str) – css selector of the element.

	description (str) – Description of the Promise, used in log messages.

	timeout (float) – Maximum number of seconds to wait for the Promise to be satisfied before timing out

	
wait_for_element_invisibility(element_selector, description, timeout=60)

	Waits for element specified by element_selector until it disappears from the web page.

Example usage:

self.wait_for_element_invisibility('.submit', 'Submit Button Disappeared')

	Parameters

	
	element_selector (str) – css selector of the element.

	description (str) – Description of the Promise, used in log messages.

	timeout (float) – Maximum number of seconds to wait for the Promise to be satisfied before timing out

	
wait_for_element_presence(element_selector, description, timeout=60)

	Waits for element specified by element_selector to be present in DOM.

Example usage:

self.wait_for_element_presence('.submit', 'Submit Button is Present')

	Parameters

	
	element_selector (str) – css selector of the element.

	description (str) – Description of the Promise, used in log messages.

	timeout (float) – Maximum number of seconds to wait for the Promise to be satisfied before timing out

	
wait_for_element_visibility(element_selector, description, timeout=60)

	Waits for element specified by element_selector until it is displayed on web page.

Example usage:

self.wait_for_element_visibility('.submit', 'Submit Button is Visible')

	Parameters

	
	element_selector (str) – css selector of the element.

	description (str) – Description of the Promise, used in log messages.

	timeout (float) – Maximum number of seconds to wait for the Promise to be satisfied before timing out

	
wait_for_page(timeout=30)

	Block until the page loads, then returns the page.
Useful for ensuring that we navigate successfully to a particular page.

	Keyword Arguments

	timeout (int) – The number of seconds to wait for the page before timing out with an exception.

	Raises

	BrokenPromise – The timeout is exceeded without the page loading successfully.

	
warning(msg)

	Subclasses call this to indicate that something unexpected
occurred while interacting with the page.

Page objects themselves should never make assertions or
raise exceptions, but they can issue warnings to make
tests easier to debug.

	Parameters

	msg (str) – The message to log as a warning.

	Returns

	None

	
exception bok_choy.page_object.WrongPageError

	The page object reports that we’re on the wrong page!

	
exception bok_choy.page_object.XSSExposureError

	An XSS issue has been found on the current page.

	
bok_choy.page_object.no_selenium_errors(func)

	Decorator to create an EmptyPromise check function that is satisfied
only when func executes without a Selenium error.

This protects against many common test failures due to timing issues.
For example, accessing an element after it has been modified by JavaScript
ordinarily results in a StaleElementException. Methods decorated
with no_selenium_errors will simply retry if that happens, which makes tests
more robust.

	Parameters

	func (callable) – The function to execute, with retries if an error occurs.

	Returns

	Decorated function

	
bok_choy.page_object.pre_verify(method)

	Decorator that calls self._verify_page() before executing the decorated method

	Parameters

	method (callable) – The method to decorate.

	Returns

	Decorated method

	
bok_choy.page_object.unguarded(method)

	Mark a PageObject method as unguarded.

Unguarded methods don’t verify that the PageObject is
on the current browser page before they execute

	Parameters

	method (callable) – The method to decorate.

	Returns

	Decorated method

accessibility

A11yAudit and A11yAuditConfig (Abstract Classes)

Interface for running accessibility audits on a PageObject.

	
class bok_choy.a11y.a11y_audit.A11yAudit(browser, url, config=None, *args, **kwargs)

	Allows auditing of a page for accessibility issues.

The ruleset to use can be specified by the environment variable
BOKCHOY_A11Y_RULESET. Currently, there are two ruleset implemented:

axe_core:

	Ruleset class: AxeCoreAudit

	Ruleset config: AxeCoreAuditConfig

	This is default ruleset.

google_axs:

	Ruleset class: AxsAudit

	Ruleset config: AxsAuditConfig

Sets ruleset to be used.

	Parameters

	
	browser – A browser instance

	url – URL of the page to test

	config – (optional) A11yAuditConfig or subclass of A11yAuditConfig

	
check_for_accessibility_errors()

	Run an accessibility audit, parse the results, and raise a single
exception if there are violations.

Note that an exception is only raised on errors, not on warnings.

	Returns

	None

	Raises

	AccessibilityError

	
default_config

	Return an instance of a subclass of A11yAuditConfig.

	
do_audit()

	Audit the page for accessibility problems using the enabled ruleset.

	Returns

	A list (one for each browser session) of results returned from
the audit. See documentation of _check_rules in the enabled
ruleset for the format of each result.

	
static report_errors(audit, url)

	
	Parameters

	
	audit – results of an accessibility audit.

	url – the url of the page being audited.

	Raises

	
	AccessibilityError if errors are found in the audit.

	`NotImplementedError` if this isn’t overwritten in the ruleset – specific implementation.

	
class bok_choy.a11y.a11y_audit.A11yAuditConfig(*args, **kwargs)

	The A11yAuditConfig object defines the options available in an
accessibility ruleset.

	
customize_ruleset(custom_ruleset_file=None)

	Allows customization of the ruleset. (e.g. adding custom rules,
extending the implementation of an existing rule.)

	Raises

	`NotImplementedError` if this isn’t overwritten in the ruleset – specific implementation.

	
set_rules(rules)

	Overrides the default rules to be run.

	Raises

	`NotImplementedError` if this isn’t overwritten in the ruleset – specific implementation.

	
set_rules_file(path=None)

	Sets self.rules_file to the passed file.

	Parameters

	filepath where the JavaScript for the ruleset can be found. (A) –

This is intended to be used in the case of using an extended or
modified version of the ruleset. The interface and response
format are expected to be unmodified.

	
set_scope(include=None, exclude=None)

	Overrides the default scope (part of the DOM) to inspect.

	Raises

	`NotImplementedError` if this isn’t overwritten in the ruleset – specific implementation.

	
exception bok_choy.a11y.a11y_audit.A11yAuditConfigError

	An error in A11yAuditConfig.

	
exception bok_choy.a11y.a11y_audit.AccessibilityError

	The page violates one or more accessibility rules.

AxsAudit and AxsAuditConfig

Interface for using the google accessibility ruleset.
See: https://github.com/GoogleChrome/accessibility-developer-tools

	
class bok_choy.a11y.axs_ruleset.AuditResults(errors, warnings)

	Create new instance of AuditResults(errors, warnings)

	
errors

	Alias for field number 0

	
warnings

	Alias for field number 1

	
class bok_choy.a11y.axs_ruleset.AxsAudit(browser, url, config=None, *args, **kwargs)

	Use Google’s Accessibility Developer Tools to audit a
page for accessibility problems.

See https://github.com/GoogleChrome/accessibility-developer-tools

Sets ruleset to be used.

	Parameters

	
	browser – A browser instance

	url – URL of the page to test

	config – (optional) A11yAuditConfig or subclass of A11yAuditConfig

	
default_config

	Returns an instance of AxsAuditConfig.

	
static get_errors(audit_results)

	
	Parameters

	audit_results – results of AxsAudit.do_audit().

Returns: a list of errors.

	
static report_errors(audit, url)

	
	Parameters

	
	audit – results of AxsAudit.do_audit().

	url – the url of the page being audited.

Raises: AccessibilityError

	
class bok_choy.a11y.axs_ruleset.AxsAuditConfig(*args, **kwargs)

	The AxsAuditConfig object defines the options available when
running an AxsAudit.

	
customize_ruleset(custom_ruleset_file=None)

	This has not been implemented for the google_axs ruleset.

	Raises

	NotImplementedError

	
set_rules(rules)

	Sets the rules to be run or ignored for the audit.

	Parameters

	rules – a dictionary of the format {“ignore”: [], “apply”: []}.

See https://github.com/GoogleChrome/accessibility-developer-tools/tree/master/src/audits

Passing {“apply”: []} or {} means to check for all available rules.

Passing {“apply”: None} means that no audit should be done for this page.

Passing {“ignore”: []} means to run all otherwise enabled rules.
Any rules in the “ignore” list will be ignored even if they were also
specified in the “apply”.

Examples

To check only badAriaAttributeValue:

page.a11y_audit.config.set_rules({
 "apply": ['badAriaAttributeValue']
})

To check all rules except badAriaAttributeValue:

page.a11y_audit.config.set_rules({
 "ignore": ['badAriaAttributeValue'],
})

	
set_scope(include=None, exclude=None)

	Sets scope, the “start point” for the audit.

	Parameters

	
	include – A list of css selectors specifying the elements that
contain the portion of the page that should be audited.
Defaults to auditing the entire document.

	exclude – This arg is not implemented in this ruleset.

Examples

To check only the div with id foo:

page.a11y_audit.config.set_scope(["div#foo"])

To reset the scope to check the whole document:

page.a11y_audit.config.set_scope()

AxeCoreAudit and AxeCoreAuditConfig

Interface for using the axe-core ruleset.
See: https://github.com/dequelabs/axe-core

	
class bok_choy.a11y.axe_core_ruleset.AxeCoreAudit(browser, url, config=None, *args, **kwargs)

	Use Deque Labs’ axe-core engine to audit a page for accessibility issues.

Related documentation:

https://github.com/dequelabs/axe-core/blob/master/doc/API.md

Sets ruleset to be used.

	Parameters

	
	browser – A browser instance

	url – URL of the page to test

	config – (optional) A11yAuditConfig or subclass of A11yAuditConfig

	
default_config

	Returns an instance of AxeCoreAuditConfig.

	
static format_errors(errors)

	
	Parameters

	errors – results of AxeCoreAudit.get_errors().

Returns: The errors as a formatted string.

	
static get_errors(audit_results)

	
	Parameters

	audit_results – results of AxeCoreAudit.do_audit().

	Returns

	A dictionary with keys “errors” and “total”.

	
static report_errors(audit, url)

	
	Parameters

	
	audit – results of AxeCoreAudit.do_audit().

	url – the url of the page being audited.

Raises: AccessibilityError

	
class bok_choy.a11y.axe_core_ruleset.AxeCoreAuditConfig(*args, **kwargs)

	The AxeCoreAuditConfig object defines the options available when
running an AxeCoreAudit.

	
customize_ruleset(custom_ruleset_file=None)

	Updates the ruleset to include a set of custom rules. These rules will
be _added_ to the existing ruleset or replace the existing rule with
the same ID.

	Parameters

	custom_ruleset_file (optional) – The filepath to the custom rules.
Defaults to None. If custom_ruleset_file isn’t passed, the
environment variable BOKCHOY_A11Y_CUSTOM_RULES_FILE will be
checked. If a filepath isn’t specified by either of these
methods, the ruleset will not be updated.

	Raises

	IOError if the specified file does not exist.

Examples

To include the rules defined in axe-core-custom-rules.js:

page.a11y_audit.config.customize_ruleset(
 "axe-core-custom-rules.js"
)

Alternatively, use the environment variable BOKCHOY_A11Y_CUSTOM_RULES_FILE
to specify the path to the file containing the custom rules.

Documentation for how to write rules:

https://github.com/dequelabs/axe-core/blob/master/doc/developer-guide.md

An example of a custom rules file can be found at
https://github.com/edx/bok-choy/tree/master/tests/a11y_custom_rules.js

	
set_rules(rules)

	Set rules to ignore XOR limit to when checking for accessibility
errors on the page.

	Parameters

	rules – a dictionary one of the following formats.
If you want to run all of the rules except for some:

{"ignore": []}

If you want to run only a specific set of rules:

{"apply": []}

If you want to run only rules of a specific standard:

{"tags": []}

Examples

To run only “bad-link” and “color-contrast” rules:

page.a11y_audit.config.set_rules({
 "apply": ["bad-link", "color-contrast"],
})

To run all rules except for “bad-link” and “color-contrast”:

page.a11y_audit.config.set_rules({
 "ignore": ["bad-link", "color-contrast"],
})

To run only WCAG 2.0 Level A rules:

page.a11y_audit.config.set_rules({
 "tags": ["wcag2a"],
})

	To run all rules:

	page.a11y_audit.config.set_rules({})

Related documentation:

	https://github.com/dequelabs/axe-core/blob/master/doc/API.md#options-parameter-examples

	https://github.com/dequelabs/axe-core/doc/rule-descriptions.md

	
set_scope(include=None, exclude=None)

	Sets scope (refered to as context in ruleset documentation), which
defines the elements on a page to include or exclude in the audit. If
neither include nor exclude are passed, the entire document will
be included.

	Parameters

	
	include (optional) – a list of css selectors for elements that

	be included in the audit. By, default, the entire document (should) –

	included. (is) –

	exclude (optional) – a list of css selectors for elements that should not

	included in the audit. (be) –

Examples

To include all items in #main-content except #some-special-elm:

page.a11y_audit.config.set_scope(
 exclude=["#some-special-elm"],
 include=["#main-content"]
)

To include all items in the document except #some-special-elm:

page.a11y_audit.config.set_scope(
 exclude=["#some-special-elm"],
)

To include only children of #some-special-elm:

page.a11y_audit.config.set_scope(
 include=["#some-special-elm"],
)

Context documentation:

https://github.com/dequelabs/axe-core/blob/master/doc/API.md#a-context-parameter

Note that this implementation only supports css selectors. It does
not accept nodes as described in the above documentation resource.

promise

Variation on the “promise” design pattern.
Promises make it easier to handle asynchronous operations correctly.

	
exception bok_choy.promise.BrokenPromise(promise)

	The promise was not satisfied within the time constraints.

Configure the broken promise error.

	Parameters

	promise (Promise) – The promise that was not satisfied.

	
class bok_choy.promise.EmptyPromise(check_func, description, **kwargs)

	A promise that has no result value.

Configure the promise.

Unlike a regular Promise, the check_func() does NOT return a tuple
with a result value. That’s why the promise is “empty” – you don’t get anything back.

Example usage:

This will block until `is_done` returns `True` or we reach the timeout limit.
EmptyPromise(lambda: is_done('test'), "Test operation is done").fulfill()

	Parameters

	
	check_func (callable) – Function that accepts no arguments and
returns a boolean indicating whether the promise is fulfilled.

	description (str) – Description of the Promise, used in log messages.

	Returns

	EmptyPromise

	
class bok_choy.promise.Promise(check_func, description, try_limit=None, try_interval=0.5, timeout=30)

	Check that an asynchronous action completed, blocking until it does
or timeout / try limits are reached.

Configure the Promise.

	The Promise will poll check_func() until either:

	
	The promise is satisfied

	The promise runs out of tries (checks more than try_limit times)

	The promise runs out of time (takes longer than timeout seconds)

If the try_limit or timeout is reached without success, then the promise is “broken” and
an exception will be raised.

Note that if you specify a try_limit but not a timeout, the default timeout is still used.
This is to prevent an inadvertent infinite loop. If you want to make sure that the
try_limit expires first (and thus that many attempts will be made), then you should also
pass in a larger value for timeout.

description is a string that will be included in the exception to make debugging easier.

Example:

Dummy check function that indicates the promise is always satisfied
check_func = lambda: (True, "Hello world!")

Check up to 5 times if the operation has completed
result = Promise(check_func, "Operation has completed", try_limit=5).fulfill()

	Parameters

	
	check_func (callable) – A function that accepts no arguments and returns a (is_satisfied, result) tuple,
where is_satisfied is a boolean indiating whether the promise was satisfied, and result
is a value to return from the fulfilled Promise.

	description (str) – Description of the Promise, used in log messages.

	Keyword Arguments

	
	try_limit (int or None) – Number of attempts to make to satisfy the Promise.
Can be None to disable the limit.

	try_interval (float) – Number of seconds to wait between attempts.

	timeout (float) – Maximum number of seconds to wait for the Promise to be satisfied before timing out.

	Returns

	Promise

	
fulfill()

	Evaluate the promise and return the result.

	Returns

	The result of the Promise (second return value from the check_func)

	Raises

	BrokenPromise – the Promise was not satisfied within the time or attempt limits.

query

Tools for interacting with the DOM inside a browser.

	
class bok_choy.query.BrowserQuery(browser, **kwargs)

	A Query that operates on a browser.

Generate a query over a browser.

	Parameters

	browser (selenium.webdriver) – A Selenium-controlled browser.

	Keyword Arguments

	
	css (str) – A CSS selector.

	xpath (str) – An XPath selector.

	Returns

	BrowserQuery

	Raises

	TypeError – The query must be passed either a CSS or XPath selector, but not both.

	
attrs(attribute_name)

	Retrieve HTML attribute values from the elements matched by the query.

Example usage:

Assume that the query matches html elements:
<div class="foo"> and <div class="bar">
>> q.attrs('class')
['foo', 'bar']

	Parameters

	attribute_name (str) – The name of the attribute values to retrieve.

	Returns

	A list of attribute values for attribute_name.

	
click()

	Click each matched element.

Example usage:

Click the first element matched by the query
q.first.click()

	Returns

	None

	
fill(text)

	Set the text value of each matched element to text.

Example usage:

Set the text of the first element matched by the query to "Foo"
q.first.fill('Foo')

	Parameters

	text (str) – The text used to fill the element (usually a text field or text area).

	Returns

	None

	
focused

	Checks that at least one matched element is focused. More
specifically, it checks whether the element is document.activeElement.
If no matching element is focused, this returns False.

	Returns

	bool

	
html

	Retrieve the inner HTML of each element matched by the query.

Example usage:

Assume that the query matches html elements:
<div>Foo</div> and <div>Bar</div>
>> q.html
['Foo', 'Bar']

	Returns

	The inner HTML for each element matched by the query.

	
invisible

	Check whether all matched elements are present, but not visible.

	Returns

	bool

	
is_focused()

	Checks that at least one matched element is focused. More
specifically, it checks whether the element is document.activeElement.
If no matching element is focused, this returns False.

	Returns

	bool

	
selected

	Check whether all the matched elements are selected.

	Returns

	bool

	
text

	Retrieve text from each matched element.

Example usage:

Assume that the query matches html elements:
<div>Foo</div> and <div>Bar</div>
>> q.text
['Foo', 'Bar']

	Returns

	The text of each element matched by the query.

	
visible

	Check whether all matched elements are visible.

	Returns

	bool

	
class bok_choy.query.Query(seed_fn, desc=None)

	General mechanism for selecting and transforming values.

Configure the Query.

	Parameters

	seed_fn (callable) – Callable with no arguments that produces a list of values.

	Keyword Arguments

	desc (str) – A description of the query, used in log messages.
If not provided, defaults to the name of the seed function.

	Returns

	Query

	
execute(try_limit=5, try_interval=0.5, timeout=30)

	Execute this query, retrying based on the supplied parameters.

	Keyword Arguments

	
	try_limit (int) – The number of times to retry the query.

	try_interval (float) – The number of seconds to wait between each try (float).

	timeout (float) – The maximum number of seconds to spend retrying (float).

	Returns

	The transformed results of the query.

	Raises

	BrokenPromise – The query did not execute without a Selenium error after one or more attempts.

	
filter(filter_fn=None, desc=None, **kwargs)

	Return a copy of this query, with some values removed.

Example usages:

Returns a query that matches even numbers
q.filter(filter_fn=lambda x: x % 2)

Returns a query that matches elements with el.description == "foo"
q.filter(description="foo")

	Keyword Arguments

	
	filter_fn (callable) – If specified, a function that accepts one argument (the element)
and returns a boolean indicating whether to include that element in the results.

	kwargs – Specify attribute values that an element must have to be included in the results.

	desc (str) – A description of the filter, for use in log messages.
Defaults to the name of the filter function or attribute.

	Raises

	TypeError – neither or both of filter_fn and kwargs are provided.

	
first

	Return a Query that selects only the first element of this Query.
If no elements are available, returns a query with no results.

Example usage:

>> q = Query(lambda: list(range(5)))
>> q.first.results
[0]

	Returns

	Query

	
is_present()

	Check whether the query returns any results.

	Returns

	Boolean indicating whether the query contains any results.

	
map(map_fn, desc=None)

	Return a copy of this query, with the values mapped through map_fn.

	Parameters

	map_fn (callable) – A callable that takes a single argument and returns a new value.

	Keyword Arguments

	desc (str) – A description of the mapping transform, for use in log message.
Defaults to the name of the map function.

	Returns

	Query

	
nth(index)

	Return a query that selects the element at index (starts from 0).
If no elements are available, returns a query with no results.

Example usage:

>> q = Query(lambda: list(range(5)))
>> q.nth(2).results
[2]

	Parameters

	index (int) – The index of the element to select (starts from 0)

	Returns

	Query

	
present

	Check whether the query returns any results.

	Returns

	Boolean indicating whether the query contains any results.

	
replace(**kwargs)

	Return a copy of this Query, but with attributes specified
as keyword arguments replaced by the keyword values.

	Keyword Arguments

	to replace in the copy. (Attributes/values) –

	Returns

	A copy of the query that has its attributes updated with the specified values.

	Raises

	TypeError – The Query does not have the specified attribute.

	
results

	A list of the results of the query, which are cached.
If you call results multiple times on the same query, you will always get the same results.
Use reset() to clear the cache and re-run the query.

	Returns

	The results from executing the query.

	
transform(transform, desc=None)

	Create a copy of this query, transformed by transform.

	Parameters

	transform (callable) – Callable that takes an iterable of values and
returns an iterable of transformed values.

	Keyword Arguments

	desc (str) – A description of the transform, to use in log messages.
Defaults to the name of the transform function.

	Returns

	Query

	
bok_choy.query.no_error(func)

	Decorator to create a Promise check function that is satisfied
only when func executes without a Selenium error.

This protects against many common test failures due to timing issues.
For example, accessing an element after it has been modified by JavaScript
ordinarily results in a StaleElementException. Methods decorated
with no_error will simply retry if that happens, which makes tests
more robust.

	Parameters

	func (callable) – The function to execute, with retries if an error occurs.

	Returns

	Decorated function

web_app_test

Base class for testing a web application.

	
class bok_choy.web_app_test.WebAppTest(*args, **kwargs)

	Base class for testing a web application.

	
get_web_driver()

	Override NeedleTestCases’s get_web_driver class method to return the WebDriver instance
that is already being used, instead of starting up a new one.

	
quit_browser()

	Terminate the web browser which was launched to run the tests.

	
setUp()

	Start the browser for use by the test.
You must call this in the setUp method of any subclasses before using the browser!

	Returns

	None

	
classmethod setUpClass()

	Override NeedleTestCase’s setUpClass method so that it does not
start up the browser once for each testcase class.
Instead we start up the browser once per TestCase instance,
in the setUp method.

	
set_viewport_size(width, height)

	Override NeedleTestCases’s set_viewport_size class method because we need it to operate
on the instance not the class.

See the Needle documentation at http://needle.readthedocs.org/ for information on this
feature. It is particularly useful to predict the size of the resulting screenshots
when taking fullscreen captures, or to test responsive sites.

	
classmethod tearDownClass()

	Override NeedleTestCase’s tearDownClass method because it
would quit the browser. This is not needed as we have already quit the browser
after each TestCase, by virtue of a cleanup that we add in the setUp method.

	
unique_id

	Helper method to return a uuid.

	Returns

	39-char UUID string

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bok_choy	

 	
 	
 bok_choy.a11y.a11y_audit	

 	
 	
 bok_choy.a11y.axe_core_ruleset	

 	
 	
 bok_choy.a11y.axs_ruleset	

 	
 	
 bok_choy.browser	

 	
 	
 bok_choy.javascript	

 	
 	
 bok_choy.page_object	

 	
 	
 bok_choy.promise	

 	
 	
 bok_choy.query	

 	
 	
 bok_choy.web_app_test	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	a11y_audit (bok_choy.page_object.PageObject attribute)

 	A11yAudit (class in bok_choy.a11y.a11y_audit)

 	A11yAuditConfig (class in bok_choy.a11y.a11y_audit)

 	A11yAuditConfigError

 	AccessibilityError

 	add_profile_customizer() (in module bok_choy.browser)

 	
 	attrs() (bok_choy.query.BrowserQuery method)

 	AuditResults (class in bok_choy.a11y.axs_ruleset)

 	AxeCoreAudit (class in bok_choy.a11y.axe_core_ruleset)

 	AxeCoreAuditConfig (class in bok_choy.a11y.axe_core_ruleset)

 	AxsAudit (class in bok_choy.a11y.axs_ruleset)

 	AxsAuditConfig (class in bok_choy.a11y.axs_ruleset)

B

 	
 	bok_choy.a11y.a11y_audit (module)

 	bok_choy.a11y.axe_core_ruleset (module)

 	bok_choy.a11y.axs_ruleset (module)

 	bok_choy.browser (module)

 	bok_choy.javascript (module)

 	bok_choy.page_object (module)

 	
 	bok_choy.promise (module)

 	bok_choy.query (module)

 	bok_choy.web_app_test (module)

 	BrokenPromise

 	browser() (in module bok_choy.browser)

 	BrowserConfigError

 	BrowserQuery (class in bok_choy.query)

C

 	
 	check_for_accessibility_errors() (bok_choy.a11y.a11y_audit.A11yAudit method)

 	clear_profile_customizers() (in module bok_choy.browser)

 	click() (bok_choy.query.BrowserQuery method)

 	
 	customize_ruleset() (bok_choy.a11y.a11y_audit.A11yAuditConfig method)

 	(bok_choy.a11y.axe_core_ruleset.AxeCoreAuditConfig method)

 	(bok_choy.a11y.axs_ruleset.AxsAuditConfig method)

D

 	
 	default_config (bok_choy.a11y.a11y_audit.A11yAudit attribute)

 	(bok_choy.a11y.axe_core_ruleset.AxeCoreAudit attribute)

 	(bok_choy.a11y.axs_ruleset.AxsAudit attribute)

 	
 	do_audit() (bok_choy.a11y.a11y_audit.A11yAudit method)

E

 	
 	EmptyPromise (class in bok_choy.promise)

 	
 	errors (bok_choy.a11y.axs_ruleset.AuditResults attribute)

 	execute() (bok_choy.query.Query method)

F

 	
 	fill() (bok_choy.query.BrowserQuery method)

 	filter() (bok_choy.query.Query method)

 	first (bok_choy.query.Query attribute)

 	
 	focused (bok_choy.query.BrowserQuery attribute)

 	format_errors() (bok_choy.a11y.axe_core_ruleset.AxeCoreAudit static method)

 	fulfill() (bok_choy.promise.Promise method)

G

 	
 	get_errors() (bok_choy.a11y.axe_core_ruleset.AxeCoreAudit static method)

 	(bok_choy.a11y.axs_ruleset.AxsAudit static method)

 	
 	get_web_driver() (bok_choy.web_app_test.WebAppTest method)

H

 	
 	handle_alert() (bok_choy.page_object.PageObject method)

 	
 	html (bok_choy.query.BrowserQuery attribute)

I

 	
 	invisible (bok_choy.query.BrowserQuery attribute)

 	is_browser_on_page() (bok_choy.page_object.PageObject method)

 	
 	is_focused() (bok_choy.query.BrowserQuery method)

 	is_present() (bok_choy.query.Query method)

J

 	
 	js_defined() (in module bok_choy.javascript)

M

 	
 	map() (bok_choy.query.Query method)

N

 	
 	no_error() (in module bok_choy.query)

 	
 	no_selenium_errors() (in module bok_choy.page_object)

 	nth() (bok_choy.query.Query method)

P

 	
 	PageLoadError

 	PageObject (class in bok_choy.page_object)

 	
 	pre_verify() (in module bok_choy.page_object)

 	present (bok_choy.query.Query attribute)

 	Promise (class in bok_choy.promise)

Q

 	
 	q() (bok_choy.page_object.PageObject method)

 	
 	Query (class in bok_choy.query)

 	quit_browser() (bok_choy.web_app_test.WebAppTest method)

R

 	
 	replace() (bok_choy.query.Query method)

 	report_errors() (bok_choy.a11y.a11y_audit.A11yAudit static method)

 	(bok_choy.a11y.axe_core_ruleset.AxeCoreAudit static method)

 	(bok_choy.a11y.axs_ruleset.AxsAudit static method)

 	
 	requirejs() (in module bok_choy.javascript)

 	results (bok_choy.query.Query attribute)

S

 	
 	save_driver_logs() (in module bok_choy.browser)

 	save_screenshot() (in module bok_choy.browser)

 	save_source() (in module bok_choy.browser)

 	scroll_to_element() (bok_choy.page_object.PageObject method)

 	selected (bok_choy.query.BrowserQuery attribute)

 	set_rules() (bok_choy.a11y.a11y_audit.A11yAuditConfig method)

 	(bok_choy.a11y.axe_core_ruleset.AxeCoreAuditConfig method)

 	(bok_choy.a11y.axs_ruleset.AxsAuditConfig method)

 	
 	set_rules_file() (bok_choy.a11y.a11y_audit.A11yAuditConfig method)

 	set_scope() (bok_choy.a11y.a11y_audit.A11yAuditConfig method)

 	(bok_choy.a11y.axe_core_ruleset.AxeCoreAuditConfig method)

 	(bok_choy.a11y.axs_ruleset.AxsAuditConfig method)

 	set_viewport_size() (bok_choy.web_app_test.WebAppTest method)

 	setUp() (bok_choy.web_app_test.WebAppTest method)

 	setUpClass() (bok_choy.web_app_test.WebAppTest class method)

T

 	
 	tearDownClass() (bok_choy.web_app_test.WebAppTest class method)

 	
 	text (bok_choy.query.BrowserQuery attribute)

 	transform() (bok_choy.query.Query method)

U

 	
 	unguarded() (in module bok_choy.page_object)

 	
 	unique_id (bok_choy.web_app_test.WebAppTest attribute)

 	url (bok_choy.page_object.PageObject attribute)

V

 	
 	validate_url() (bok_choy.page_object.PageObject class method)

 	
 	visible (bok_choy.query.BrowserQuery attribute)

 	visit() (bok_choy.page_object.PageObject method)

W

 	
 	wait_for() (bok_choy.page_object.PageObject method)

 	wait_for_ajax() (bok_choy.page_object.PageObject method)

 	wait_for_element_absence() (bok_choy.page_object.PageObject method)

 	wait_for_element_invisibility() (bok_choy.page_object.PageObject method)

 	wait_for_element_presence() (bok_choy.page_object.PageObject method)

 	wait_for_element_visibility() (bok_choy.page_object.PageObject method)

 	
 	wait_for_js() (in module bok_choy.javascript)

 	wait_for_page() (bok_choy.page_object.PageObject method)

 	warning() (bok_choy.page_object.PageObject method)

 	warnings (bok_choy.a11y.axs_ruleset.AuditResults attribute)

 	WebAppTest (class in bok_choy.web_app_test)

 	WrongPageError

X

 	
 	XSSExposureError

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 bok-choy

 		
 Introduction

 		
 Installation

 		
 Tutorial

 		
 Folder structure

 		
 Round 1 - The framework of a test

 		
 Define the page

 		
 Write a test for the page

 		
 Execute the test

 		
 What just happened?

 		
 Round 2 - Interacting with a page

 		
 Improve the page definition

 		
 Add another page’s definition

 		
 Define the search method

 		
 Add the new test

 		
 Run it!

 		
 What just happened?

 		
 Round 3 - Search and verify results

 		
 Improve the page definitions

 		
 Improve the search test

 		
 Run it!

 		
 What just happened?

 		
 Take it from here!

 		
 Test-Design Guidelines

 		
 Put browser interactions in the page object, not the test

 		
 Put assertions in the test, not the page object

 		
 Never use time.sleep()

 		
 Always make pages wait for actions to complete

 		
 Wait for JavaScript to load

 		
 Performing Accessibility Audits

 		
 Define the Accessibility Rules to Check for a Page

 		
 (Optional) Define the Scope of Accessibility Auditing for a Page

 		
 Trigger an Audit Actively and Assert on the Results Returned

 		
 Leverage Your Existing Tests and Fail on Accessibility Errors

 		
 Visual Diff Testing

 		
 Write Your Page Object and Test Case Code to Navigate the System Under Test

 		
 Add the Call to assertScreenshot

 		
 Create the Initial Baseline Screenshot

 		
 Execute Your Test Cases After Changes to the System Under Test

 		
 Advanced Features

 		
 Performing XSS Vulnerability Audits

 		
 Trigger XSS Vulnerability Audits in Existing Tests

 		
 Browser Customization

 		
 Firefox Profile Preferences

 		
 Firefox Profile Directory

 		
 Testing Environment Configuration

 		
 Testing via TravisCI

 		
 Testing via tox

 		
 API Reference

 		
 browser

 		
 javascript

 		
 page_object

 		
 accessibility

 		
 A11yAudit and A11yAuditConfig (Abstract Classes)

 		
 AxsAudit and AxsAuditConfig

 		
 AxeCoreAudit and AxeCoreAuditConfig

 		
 promise

 		
 query

 		
 web_app_test

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

